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We propose a Monte Carlo methodology for the joint estimation of unobserved dynamic variables and
unknown static parameters in chaotic systems. The technique is sequential, i.e., it updates the variable and
parameter estimates recursively as new observations become available, and, hence, suitable for online imple-
mentation. We demonstrate the validity of the method by way of two examples. In the first one, we tackle the
estimation of all the dynamic variables and one unknown parameter of a five-dimensional nonlinear model
using a time series of scalar observations experimentally collected from a chaotic CO2 laser. In the second
example, we address the estimation of the two dynamic variables and the phase parameter of a numerical
model commonly employed to represent the dynamics of optoelectronic feedback loops designed for chaotic
communications over fiber-optic links.
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I. INTRODUCTION

Many complex physical systems with a rich dynamical
behavior can be modeled by sets of nonlinear differential
equations. A compact and common notation for this class of
models is

ẋ�t� = f�x�t�,�� , �1�

where t�R+ is time, x�t��Rdx comprises of the time-
varying system state, and f is a nonlinear function, param-
etrized by the fixed vector ��Rd�. In many practical prob-
lems, it is desired to estimate both the static parameters in �
and the dynamic variables in x�t� from the observation of a
time series. Such series often consists of a subset of the state
variables, possibly transformed and corrupted by noise.

The estimation problem becomes particularly attractive,
yet harder, when the system exhibits chaotic dynamics.
Many models described in the literature have been designed
to provide a good representation of the dynamical features of
interest in some physical system but cannot actually be used
to estimate its evolution for a particular series of observa-
tions, in the sense that a parameter vector � and an initial
condition x�0� cannot be found that follow closely a particu-
lar observed time series. This is due to the very definition
of chaos, since arbitrarily small perturbations in x�0� or �
quickly lead to radically different realizations of x�t�.

Some approaches have been recently proposed for esti-
mating either the model state, its fixed parameters, or both.
Multiple shooting techniques �1,2� are offline �batch� meth-
ods to jointly estimate the evolution of x�t�, in a finite-length
time interval, and the value of � from a time series. They are
computationally very demanding and cannot be adapted to
the online estimation. The family of Kalman filtering meth-
ods can tackle the latter difficulty �3� but they imply approxi-
mations that result in estimation inaccuracy, even in much
simpler problems �4�. Another approach is based on the syn-

chronization properties of coupled chaotic systems. If two
models—master and slave—are coupled in a way that en-
sures synchronization when they are identical then the pa-
rameters of the slave can be adjusted by minimizing the syn-
chronization error �5–7�. This is a very appealing strategy
because of the dimensionality reduction: only � has to be
estimated and the estimation of x�t� is “automatic” from the
synchronized slave model. Moreover, adaptive implementa-
tions are feasible. However, such methods are hard to apply
in practice because they rely on the unrealistic assumption
that the master and slave systems are identical �5,7�. Obser-
vational noise can also lead to great practical difficulties.

In this paper, we introduce a class of adaptive algorithms
for the joint estimation of x�t� and � from an observed time
series. Our approach is adapted from the sequential Monte
Carlo optimization �SMCO� methodology in �8�. It requires
the time discretization and randomization of the system
model, in a way similar to �3�, but it does not involve any
approximations regarding the nonlinearity f�·�. Unlike in
synchronization-oriented procedures, it is not necessary to
explicitly plug the observations into the model to simulate
any type of coupling. We provide a general description of
the proposed methodology, in a form that makes it appli-
cable to virtually any model of the form �1� and then con-
sider two specific examples. In the first one, we derive a
procedure to estimate the latent state variables and an un-
known fixed parameter of the five-dimensional model in
�9,10� using experimental data from a CO2 laser in chaotic
regime. This example enables us to demonstrate the ability to
estimate the dynamic variables and the static parameters of a
chaotic model online and using experimental data. For the
second example, we address the estimation of the two dy-
namic variables and a fixed phase parameter of a numerical
model that has often been employed to represent the nonlin-
ear dynamics of optoelectronic delayed-feedback loops de-
signed for chaotic communications over fiber-optic links
�11�.
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The remaining of the paper is organized as follows. The
proposed sequential estimation methodology is introduced in
Sec. II. In Sec. III, we derive a specific algorithm for the
estimation in a CO2 laser in chaotic regime and show some
results obtained with experimental data. In Sec. IV, we con-
sider a delayed-feedback model and address a numerical
study of the relationship between the proposed method per-
formance and the maximum Lyapunov exponent �MLE� of
the system. Finally, Sec. V is devoted to the conclusions and
we provide the details of the method, as implemented for the
two examples and including a brief discussion on computa-
tional complexity, in an Appendix.

II. SEQUENTIAL MONTE CARLO OPTIMIZATION

A. Discrete-time random model

We are concerned with nonlinear systems of the form of
Eq. �1� and, more specifically, with those displaying a cha-
otic behavior, since their long-term unpredictability makes it
very challenging to track their dynamic variables or estimate
any unknown parameters. In order to obtain a more flexible
model able to produce a larger set of state trajectories but
still subject to the main dynamic features of the system of
interest, we transform Eq. �1� into a discrete-time state-space
random model. Discretization is easily carried out by Euler’s
method with time step T and it yields the difference equation

xn = xn−1 + Tf�xn−1,�� , �2�

where xn� �x1,n , . . . ,xdx,n� is the dxth dimensional state vec-
tor, with components xi,n�xi�t=nT�. Note that for suffi-
ciently small T, this discrete-time approximation of Eq. �1�
can be as accurate as we wish.

In order to encompass a larger set of possible dynamical
behaviors, we introduce randomness in the system dynamics
by adding a sequence of statistically independent perturba-
tions denoted vn= �v1,n , . . . ,vdx,n��Rdx, hence we arrive at
the model

xn = xn−1 + Tf�xn−1,�� + vn. �3�

Note that we are interested in chaotic systems, which exhibit
a very high sensitivity to small perturbations. Therefore, if
we intend to take advantage of Eq. �3� as a useful approxi-
mation of the behavior given by Eq. �1�, the variances of the
perturbations vi,n must be small enough.

The state xn and any unknown parameters in � are esti-
mated from the observations related to the dynamic vari-
ables. In particular, we assume a scalar observation consist-
ing of the ith variable, xi,n, i� �1, . . . ,dx�, perturbed by
observational noise, i.e.,

yrN = xi,rN + mrN, r = 0,1, . . . , �4�

where N is the observation period �we collect one observa-
tion for every N time steps of model �3�� and mrN is a zero-
mean noise term not necessarily Gaussian. Equation �4� is
rather specific and somewhat restrictive. In particular, the
estimation of the state and the unknown parameters becomes
much simpler when observation vectors yrN�Rdy, with dy
�1, are available for processing, instead of mere scalars.

Therefore, the latter problem is harder and more interesting
both practically and theoretically. Moreover, we also assume
that observations may not be available at each time step,
hence the period N�1. This is a usual constraint in many
experimental setups �see, e.g., the example in Sec. III� due to
practical measurement constraints. Finally, we note that the
proposed methodology is also easily adapted to scenarios
where the observations are known transformations—possibly
nonlinear—of a number of state variables.

B. Proposed method

We can now address the problem of sequentially
estimating the system state, xn, n�N, and the unknown
parameters using the sequence of observations yN:rN
= �yN ,y2N , . . . ,yrN�n�. In the sequel, we use notation � to
denote the unknown parameters to be estimated. Note that �
is a vector that consists of a subset of the elements of �.

Since Eqs. �3� and �4� together yield a random state-space
dynamical model, the immediate thought is to apply either
Kalman filtering techniques �including extended and un-
scented Kalman filters� or sequential Monte Carlo filtering
�SMCF� methods. The former approach has been investi-
gated in �3� for numerical models �not experimentally� but it
is well known to be suboptimal. SMCF algorithms �12–14�
have been recognized to be more effective and robust than
Kalman-type filters for many problems �4,15�, but there are
several reasons why they are not suitable for the problem
described in this paper. First, Eqs. �3� and �4� are artificial.
They are not intended to represent accurately the dynamics
of the observed time series and the underlying physical sys-
tem. Hence, there is no reason to claim that SMCF should
work better than any other, even ad hoc, technique. Second,
the estimation of static parameters using SMCF algorithms is
an open problem. Although some specific techniques exist
�16�, there is no general method that can be applied to an
arbitrary state-space model with a guarantee of convergence.
Third, because of the sensitivity of chaos to small perturba-
tions of the initial conditions, a stable optimal filter may not
exist for many models of the forms �3� and �4� �see �17� for
a technical exposition of this problem for generic discrete-
time nonlinear dynamical systems�. The latter problem be-
comes particularly severe when unknown static parameters
exist, as in our case.

We propose to avoid the limitations of conventional sta-
tistical filtering techniques by adapting the SMCO method-
ology proposed in �8� to our problem. SMCO methods are
aimed at the minimization of a time-varying cost function by
generating discrete sets of particles that evolve with time and
converge—under some mild conditions—toward the succes-
sive minimizers of the cost function. Each particle is a ran-
dom sample in the space of the unknowns to be estimated �in
our case, the space of �xn ,��� with its associated cost. Par-
ticles are propagated from one time instant to the next using
a Markov-chain scheme that depends on the costs �low cost
particles have a bigger chance to evolve, while high cost
particles have a bigger chance to die out� and involves par-
ticle interaction.

In order to describe the proposed technique formally, let
xrN� and �r� denote candidate values of the state variables and
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the unknown static parameters, both obtained at time rN
�note that the parameters � are fixed: the subscript in �r�
indicates only that the candidate value is computed at time
rN�. Let us define function F j as the result of iterating Eq. �3�
j times in the absence of noise �vn=0 for all n�. Specifically,
if �r� is the complete set of parameters that includes �r�, we
define F0�xrN� ,�r���xrN� and recursively construct

F j+1�xrN� ,�r�� � F j�xrN� ,�r�� + Tf�F j�xrN� ,�r��,�rN� � . �5�

If the dynamical noise in Eq. �3� is zero mean with a sym-
metric probability density function then it is apparent that
F jN�xrN� ,�r�� is the expected value of x�r+j�N conditional on
xrN=xrN� and �=�r�. Therefore, given the observations
yrN:�r+j�N, we can compute a prediction error

Er
j�xrN� ,�r�� � �

l=0

j

�y�r+l�N − �FlN�xrN� ,�r���1�2, �6�

where �a�i denotes the ith element of vector a. If we adopt
the minimization of the prediction error Er

j as the criterion for
the sequential estimation of the dynamic variables and the
unknown parameters then we need to solve the sequence of
optimization problems

�xrN
o ,�r

o� = arg min
x̃,�̃

Er
j�x̃,�̃� . �7�

The SMCO algorithm sequentially generates sets
�r� �xrN

�i� ,�r
�i� ,�r

�i��i=1
M each of them containing M particles.

The ith particle is the triple �xrN
�i� ,�r

�i� ,�r
�i��, where xrN

�i� and
�r

�i� are candidate values for the dynamic variables and the
unknown parameters, respectively, and �r

�i�=Er
j�xrN

�i� ,�r
�i�� is

the cost of the particle. Given �r, the estimates of xrN and �
are the candidate values in the particle with the least cost,
i.e., if we let io=arg mini��1,. . .,M��r

�i�, we calculate our esti-
mates as x̂rN=xrN

�io� and �̂r=�r
�io�. We can also predict the

evolution of the state variables by simply propagating the
latest estimate, i.e., x̂rN+j =F j�x̂rN ,�̂r�.

To generate the sequence of particle sets, we need to
choose a prior probability distribution at time n=0 for both
the dynamic variables and the unknown parameters. We ran-
domly draw the initial candidates from this prior and assign
them equal costs �e.g., 0� to obtain the first set �0
= �x0

�i� ,�0
�i� ,�0

�i�=0�i=1
M . Assume now that �r is available.

When the observations y�r+1�N , . . . ,y�r+j+1�N are collected, we
build a probability distribution function in the joint space of
x�r+1�N and � conditional on �r, denoted �r+1�x�r+1�N ,� ��r�,
and draw M candidate values from it,

�x�r+1�N
�i� ,�r+1

�i� � 	 �r+1�x�r+1�N,���r�, i = 1, . . . ,M . �8�

We finally compute the costs �prediction errors� as �r+1
�i�

=Er+1
j �x�r+1�N

�i� ,�r+1
�i� � in order to obtain the set �r+1

= �x�r+1�N
�i� ,�r+1

�i� ,�r+1
�i� �i=1

M .
If the distributions �r are adequately chosen, the conver-

gence of the estimates toward the true minimizers of the
prediction error can be assessed using simple induction pro-
cedures.

III. EXPERIMENTAL EXAMPLE: A CHAOTIC CO2

LASER SYSTEM

A. Experimental setup

Figure 1 shows a diagram of the experimental setup. The
laser cavity 1.45 m long is defined by a reflecting diffraction
grating mounted in the autocollimation configuration and a
partial reflecting outcoupler mirror �R and M2, respectively�.
The gain medium, a gas mixture containing CO2, is pumped
by an electric discharge. The discharge current value is set at
1.09 times the laser threshold �5.50 mA�. An electro-optic
modulator �EOM� is inserted in the laser cavity in order to
control the cavity losses by a sinusoidal forcing provided by
a function generator �FG�. Such a signal has a frequency of
100 kHz, which is around the double of the relaxation fre-
quency of the laser. By increasing the driving amplitude of
the external periodic forcing signal, the system displays a
transition to chaos through a sequence of subharmonic bifur-
cations. A further increase in this amplitude leads the system
to an interior crisis characterized by a widening of the cha-
otic attractor �see Fig. 2 and its associated text in �9��. In the
experiment, we set the system in the chaotic region just after
the occurrence of the interior crisis.

B. Deterministic and random models

A deterministic model of the laser dynamics is given by
the set of differential equations �9,18�,

ẋ1 = − k1�t�x1 + k0x1x2,

ẋ2 = − �1x2 − 2k0x1x2 + gx3 + x4 + P ,

ẋ3 = − �1x3 + gx2 + x5 + P ,

ẋ4 = − �2x4 + zx2 + gx5 + zP ,

ẋ5 = − �2x5 + zx3 + gx4 + zP , �9�

where t�R+ denotes continuous time, k1�t�=k0�1
+	 sin2�b0+F�t���, F�t�=A sin�2
ft� is the external forcing
signal, x�t�= �x1 ,x2 , . . . ,x5��R5 is the system state �the time
dependence xi=xi�t� is omitted for conciseness�, and �
= �k0 ,	 ,b0 ,�1 ,�2,g , P ,z��R8 is the vector of fixed model
parameters. The dynamic variable x1 represents the laser out-
put intensity, x2 is the population inversion between the two
resonant levels, and x3, x4, and x5 account for molecular

FIG. 1. �Color online� Experimental setup for a CO2 laser with
modulated losses. EOM: intracavity electro-optic modulator, R: re-
flecting grating, M2: partial reflecting mirror, D: fast infrared detec-
tor, FG: function generator, and DO: digital oscilloscope.
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exchanges between the two levels resonant with the radiation
field and the other rotational levels of the same vibrational
band. The static parameters include the unperturbed cavity
loss parameter k0=29.55, a coupling constant g=0.05, the
population relaxation rates �1=10.064 3 and �2=1.064 3, the
effective number of rotational levels z=10, the efficiency of
the electro-optic modulator 	=4, and the “pump” rate P
=0.026 3. The remaining parameters are related to the exter-
nal periodic forcing: f =1 /7 is the signal frequency, b0
=0.403 is the bias voltage, and A=0.060 3 is the amplitude
of forcing. All the parameters in the model are adimensional
and obtained from the experimental ones with an accuracy
better than 5%. They lead to a dynamical behavior that
shares many properties exhibited by the experiment �see,
e.g., �9��, but the model does not yield a representation of the
physical system accurate enough to estimate or predict the
time evolution of the dynamic variables of interest in the
actual experiment. In other words, it is not possible to choose
x�0� and � to guarantee that the trajectory of x1 generated by
the model and the experimental laser intensity remain corre-
lated �they diverge very quickly�.

The five equalities in Eq. �9� yield, in an obvious way, a
specific form of the vector-valued nonlinearity f�x�t� ,�� of
Eq. �1�. If we select a time step of T=5�10−3 time units and
define the state vector xn� �x1,n ,x2,n , . . . ,x5,n��R5, with
xi,n�xi�t=nT�, we can readily build the discrete-time ap-
proximation of Eq. �2�. We additionally choose the dynami-
cal noise process vn= �v1,n , . . . ,v5,n��R5 to consist of a de-
generate component, v1,n=0 for all n with probability 1, and
four independent and identically distributed Gaussian ran-
dom variables vi,n, i=2, . . . ,5, with zero mean and variance
�v

2 =10−8

The only observable in our experimental setup is the laser
output intensity, which corresponds to variable x1. Hence,
following Eq. �4�, we model the available time series as

yrN = x1,rN + mrN, r � N , �10�

where N=14 time steps and mrN is the observational noise.
We do not need to select any particular probability distribu-
tion for mrN.

C. Experimental results

In order to illustrate the validity of the method, we have
measured a sequence of experimental laser intensities and
applied the sequential optimization algorithm to track the
value of the dynamic variables x1,n , . . . ,x5,n and estimate the
value of parameter �1. The details of the applied algorithm
are given in the Appendix for reproducibility. In order to
obtain the discrete-time model for Eq. �9�, we have selected
a step-size T=0.005 time units. In the experiment, the laser
intensity is measured every 0.1 �s and we have verified that
a good approximation of this period between consecutive
observations is achieved in the discrete-time model by
choosing N=14 in Eq. �10�, i.e., if we let td denote the �real�
time �in �s� per time unit in model �9�, then NTtd
0.1 �s
and we obtain td
0.1 /NT=1.43 �s. The amplitude of the
experimental observations has been normalized to a maxi-
mum value of 0.09, in order to put them in the amplitude
scale of the numerical model �9�.

Figure 2�a� shows the normalized experimental intensity
values and the values of the dynamic variable x1,n estimated
using the proposed algorithm once convergence is achieved.
It can be seen that the algorithm tracks the intensity peaks
tightly. In the intervals between consecutive peaks, the ex-
perimental observations remain at a “floor” level which is
due to the limited accuracy of the measurement instruments.
The estimated signal, however, exhibits the typical dynami-
cal behavior of model �9� and takes values which are positive
but close to 0.

Figure 2�b� depicts the evolution of the parameter esti-
mate. We recall that the value �1=10.064 3 �indicated by the
straight horizontal line in the plot� yields the best approxi-
mation of the laser dynamics by the model. Given an initial
estimate �̂1=8.45 at time n=0, the proposed algorithm yields
converged estimates after 
11.4 �s equivalent to 
1600
discrete-time steps and the processing of 
115 experimental
observations. The normalized mean-square error �MSE� of
the parameter estimate after convergence is ��1− �̂1�2 /�1

2


10−6.
Finally, plots �c� and �d� in Fig. 2 show the phase-space

diagram of variable x2,n versus x1,n for a series of noiseless
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FIG. 2. �a� Experimentally observed laser in-
tensity and the estimate of x1,n. �b� Convergence
of the estimated parameter �̂1 toward the correct
value �1=10.043. �c� Phase-space diagram ob-
tained by integrating the model equations �in the
absence of noise�. �d� The same phase-space dia-
gram obtained from the estimates of x2,n versus
the estimates of x1,n. The number of particles in
the applied SMCO algorithm was M =2000.
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data obtained by integrating Eq. �9� �graph �c�� and the esti-
mates of x1,n and x2,n computed by the proposed algorithm
using the experimental observations �graph �d��. It can be
seen that diagram �d� is a noisy version of diagram �c�, show-
ing the ability of the proposed algorithm to follow the ex-
perimental time series using the randomized model �3�. Let
us remark that it is not possible to observe the physical mag-
nitudes represented by the dynamic variables xi, i=2, . . . ,5,
directly in the experiment, so the proposed method provides
means to “observe” them indirectly, by fitting them to the
measured laser intensity.

IV. NUMERICAL EXAMPLE: A DELAYED-FEEDBACK
SYSTEM

A. Deterministic and random models

We tackle now the estimation of the two dynamic vari-
ables and a fixed phase parameter of a numerical model that
has been employed to represent the nonlinear dynamics of
optoelectronic delayed-feedback loops designed for chaotic
communications over fiber-optic links �11,19�. It is in gen-
eral hard to forecast the time evolution of this class of sys-
tems because they can exhibit a high Lyapunov dimension
�11�. Here, we focus on the problem of tracking the system
state and recursively estimating static parameters. See �11�
for a prediction method based on synchronization, applicable
to experimental time series, but not aimed at the online pa-
rameter estimation.

When the low- and high-pass filters of the actual system
in �11� are approximated by single-pole responses, the asso-
ciated numerical model becomes

Lẋ1 = − �1 +
L

H
�x1 − x2 − � cos2�x1�t − D� + �0� ,

Hẋ2 = x1, �11�

where t is continuous time, x1�t� is the system voltage output,
x2�t� is the integrated output, the dimensionless parameter �
determines the strength of the feedback in the loop, D is the
delay of the feedback signal, L and H are the time constants
of the �single-pole approximations of the� low- and high-pass
filters in the loop, and the phase �0 is the bias point of a
Mach-Zehnder modulator �see �11� for details�. Note that we
have skipped the time dependence of the dynamic variables
x1 and x2, except to make explicit the delay of the feedback
signal x1�t−D�.

The discrete-time approximation of Eq. �11� is readily
carried out if we choose a time step T=D /�, where � is
some positive integer. In such case, and denoting xi,n=xi�t
=nT�, i� �1,2�, we obtain the discrete-time approximation
of the system of interest

x1,n = x2,n−1 − T�1 +
L

H
�x1,n−1 + x2,n−1

+ � cos2�x1,n−�−1 + �0��/L,

x2,n = x2,n−1 + Tx1,n−1/H. �12�

Equation �12� can be easily assimilated to the generic model
�3� if we introduce the ��+2�-dimensional state vector xn
= �x1,n−� , . . . ,x1,n ,x2,n� and we let the dynamic noise term
vn= �v1,n ,v2,n� consist of two independent and identically
distributed Gaussian variables with zero mean and variance
�v

2 =10−5. It is remarkable that the dimension of the state of
the discrete-time model is actually dependent on the feed-
back delay.

In this type of system, the “natural” observable is the
output voltage x1, hence we assume the observations to have
the form

yrN = x1,rN + mrN, r � N , �13�

where N is the discrete observation period and mrN is a noise
term with arbitrary �but zero-mean� distribution.

B. Numerical results

We have applied the proposed SMCO algorithm to jointly
track the state variables x1 ,x2 and estimate the phase param-
eter �0 of system �11�. We have assumed null initial condi-
tions for x1 and x2, i.e., x1�t�=x2�t�=0 for all t�D. As for
the model parameters, we have set the time constants as L

= 10−2

2
 �s and H= 1
2
 �s, which correspond to cut-off fre-

quencies of 100 MHz and 1 MHz in the low-pass and high-
pass filters, respectively. The feedback delay has been set to
D=22.5 ns and the step size for the time discretization of
the model has been selected as T=0.1 ns �as a result, the
discrete feedback delay becomes �=225 time steps and the
dimension of the state vector xn is �+2=227�. The true �as-
sumed unknown� value of the phase parameter is �0

= 

9 rad and we have used different values of the feedback

strength parameter � to illustrate the behavior of the estima-
tion algorithm. The details of the latter can be found in the
Appendix. All the simulations in this section have been car-
ried out using M =2000 particles.

Figure 3 shows the results obtained when the SMCO
method is applied to the considered system with �=3 and we
collect one observation every N=10 time steps of the nu-
merical model �i.e., one observation per ns�. In particular,
Fig. 3�a� shows the evolution of variable x1 and the noisy
observation y, in the upper axes, together with the estimated
signal x̂1, in the lower axes, in the interval 1800� t
�2100 ns. It is apparent that the signal is tracked very ac-
curately despite the relatively low observation rate of 1 /N
=0.1. This is also the case for the second dynamic variable
x2, as shown in Fig. 3�b�. The true signal x2 is represented in
the upper axes, for 22.5� t�2977.5 ns, while its estimates
are plot in the lower axes. We observe how this unobserved
signal is also tracked accurately, with only small-magnitude
zero-mean fluctuations due to the observational noise in y.

Figure 4 shows the normalized square error defined as

��0− �̂0,r�2 /�0
2 attained by the SMCO algorithm in the same

simulation of Fig. 3. We observe that the algorithm con-
verges very quickly and yields accurate estimates of �0 after
a few time steps. Then, the error progressively reduces with
time, although at a slower rate.
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Since the proposed estimation algorithm is based on the
minimization of a prediction error, there is a relevant ques-
tion of how much the predictability of the system may affect
its performance. In particular, the ability to predict the be-
havior of a chaotic system decreases �and, therefore, so does
the relevance of the prediction error as defined in this paper�
as its MLE increases. Therefore, we have studied the perfor-
mance of the SMCO method as we let the feedback strength
grow from �=1 to �=5, which also leads to a significant
increase in the MLE.

In particular, Fig. 5�a� shows the evolution of the MLE as
� increases. It is seen that we move from a nonchaotic sce-
nario when �=0.5 �for which the MLE 
0� to a highly
unpredictable system for �=5, when the MLE

0.077 �ns−1�. Indeed, if we apply the SMCO algorithm to
systems with �=1,2 , . . . ,5, the attained error increases
clearly with the MLE. Fig. 5�b� shows the normalized MSE

of the estimates x̂1 , x̂2 , �̂0 for the different feedback
strengths. The normalized MSE puts together the error in the
estimation of the three unknowns. Specifically, it is the value

�x1 − x̂1�2 + �x2 − x̂2�2 + ��0 − �̂0�2

x1
2 + x2

2 + �0
2 �14�

averaged over time and over several independent simulations
�40 for this figure�. We observe that this joint error is well
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FIG. 3. �Color online� �a� The upper axes depict the evolution of variable x1 and the associate observation y=x1+m, where m is a
Gaussian zero-mean random process, for 1800� t�2100 ns. The variance of the Gaussian perturbations in y is chosen to ensure a
signal-to-noise ratio of 20 dB and the discrete-time data rate is 1 /N=0.1 �one observation per ns�. The estimate of x1 computed recursively
by the SMCO algorithm is shown in the lower axes. �b� The upper axes depict the evolution of the unobserved dynamic variable x2 for
22.5� t�2977.5 ns, while the lower plot shows its estimate.
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rithm with observation rate 1 /N=0.1.
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below 0.01 for �=1,2 ,3 and then grows drastically for �
=4,5.

The latter results do not imply that the SMCO method
cannot be used for ��4. Its performance can be improved,
at the expense of a higher computational complexity, either
by increasing the number of particles in the algorithm M or
decreasing the observation period in the model N. When
N=2, and we get an observation rate of 1 /N=0.5, it is pos-
sible to track x1 and x2, as well as to estimate �0, accurately
without any other modifications in the algorithm. Figure 6�a�
depicts in the upper axes, the evolution of x1 and the associ-
ated observations y, together with the estimated signal x̂1 in
the lower axes. It is clearly seen that it fluctuates more rap-
idly �and also more chaotically, as indicated by the MLE� but
we still obtain a tight estimate of it. The unobserved signal x2
is also tracked properly, as shown by Fig. 6�b�.

V. CONCLUSIONS

We have proposed a sequential Monte Carlo method for
the joint estimation of unobserved dynamic variables and
unknown static parameters in chaotic systems. The procedure
aims at the minimization of prediction errors and it updates
the variable and parameter estimates recursively. It is, there-
fore, suitable for an online implementation. We have given a
general description of the method for a general system model
and then applied it in two examples. In the first one, we have
used the five-dimensional model of a CO2 laser and have
shown the validity of the proposed approach by jointly esti-
mating the five dynamic variables and one static parameter
using experimental observations from the laser. An online
parameter estimation algorithm is demonstrated to work ef-
fectively with an experimental time series from a real-world
chaotic system. For the second example, we have considered
a delayed-feedback loop. The resulting system is interesting
because the state of the discretized model grows with the
feedback delay �for the specific example, the discrete-time
state vector consists of 227 variables� and the dynamic be-

havior changes significantly with the feedback strength. With
this setup, we have numerically studied the accuracy of the
proposed estimation method and its relationship with the
MLE of the model. In particular, we have shown that the
estimation error grows with the MLE �as the system becomes
more unpredictable� but accurate results can still be achieved
if the observation rate �the number of observations per time
unit� is high enough.
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APPENDIX: SMCO ALGORITHMS

The implementation of the SMCO algorithms for the ex-
amples in Secs. III and IV are similar and differ significantly
only in the choice of prior probability distributions for their
initialization. In this appendix, we briefly introduce some
notations needed for the concise presentation of the algo-
rithms. Then we specify the initialization stages for the two
examples and describe the details of the recursive step in the
SMCO procedure employed in the examples. Finally, we
briefly comment on the complexity of the algorithm.

1. Notations

Let N�� ,C� denote a Gaussian probability distribution
with mean � and covariance matrix C and let U�a ,b� denote
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FIG. 6. �Color online� �a� The upper axes depict the evolution of variable x1 and the associate observation y=x1+m, where m is a
Gaussian zero-mean random process, for 1800� t�2100 ns. The variance of the Gaussian perturbations in y is chosen to ensure a
signal-to-noise ratio of 20 dB and the discrete-time data rate is 1 /N=0.5 �five observations per ns�. The estimate of x1 computed recursively
by the SMCO algorithm is shown in the lower axes. �b� The upper axes depict the evolution of the unobserved dynamic variable x2 for
22.5� t�2977.5 ns, while the lower plot shows its estimate.
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the uniform probability distribution in the interval �a ,b�. The
operation of drawing a random sample x�i� from a distribu-
tion P is denoted as x�i�	P.

The evolution function Fk defined recursively in Eq. �5�
for a general setting is used in the algorithm descriptions
below. For the CO2 laser example, Fk corresponds to the
iterative application of the discrete-time version �via Euler’s
method� of Eq. �9�, while for the delayed-feedback loop in
Sec. IV, it corresponds to the iteration of model �12�. The
prediction errors Er

j, with general definition in Eq. �6�, are
constructed similarly for the two examples because the ob-
servations correspond to the first dynamic variable in both
cases. Finally, we use I to denote the identity matrix.

2. Initialization for the CO2 laser system

The SMCO procedure requires the choice of prior distri-
butions for the signals of interest: both dynamic variables
and static parameters. For this example, we have set
N�x0 ,�0

2I�, where x0= �1.077�10−3 ,1.621,1.672,1.630
�10,1.672�10�� and �0

2=10−6, for x0 and N�8.55,0.40�
for �1. Then, we proceed with the following initialization
step:

�i� at time n=0, draw

x0
�i� 	 N�x̄0,�0

2I� ,

�1,0
�i� 	 N�8.55,0.40� ,

�ii� and set �0
�i�=0, for i=1, . . . ,M. Then build the particle

set �0= �x0
�i� ,�1,0

�i� ,�0
�i��i=1

M and set the variance parameters �p
2

=10−5, �v
2 =10−8, and the prediction error lag j=2 �all to be

used in the recursive step�.

3. Initialization for the delayed-feedback model

In this case, the delayed-feedback loop is initialized with
xk,n=0 for k=1,2 and n=0, . . . ,� �with probability 1�, while
the unknown phase parameter �0 is assumed to have the
uniform prior pdf U�0, 


2 �. The initialization step is detailed
below.

For i=1, . . . ,M,

�i� set xn
�i�=0 for n=0, . . . ,�,

�ii� then draw �0,0
�i� 	U�0, 


2 � and set �0,r
�i� =�0,0

�i� for all r
such that rN��, and

�iii� fix the initial costs to null �0
�i�=0.

Then build the particle sets �r= �xrN
�i� ,�0,r

�i� ,�r
�i��i=1

M , for all r
such that rN��, and set the variance parameters �p

2 =10−6,
�v

2 =10−5, and the prediction error lag j=3.

4. Recursive update

This stage is common for the two examples. Let � denote
the unknown parameter, i.e., either �1 or �0 for the examples
in Secs. III and IV, respectively. The covariance matrix of the
noise vector vn denoted C is easily obtained from the de-
scriptions of the discrete-time random models in the two
examples. At time n=rN, assume that �r= �xrN

�i� ,�r
�i� ,�r

�i��i=1
M is

available. The SMCO algorithm proceeds recursively as fol-
lows at time n+N= �r+1�N, when the next observation is
received.

�i� Draw trial parameter values �r+1
�M+i�	N��r

�i� ,�p
2� and

compute �r
�M+i�=Er

j�xrN
�i� ,�r

�M+i�� for i=1, . . . ,M and j=2.
�ii� Construct the discrete probability measure

pr�i� � ��r
�i� − min

j��1,. . .,2M�
�r

�j� +
1

M
�−2

,

for each i� �1, . . . ,2M�, and use it to draw a set of indices
i�k�	 pr�i�, where k=1, . . . ,M.

�iii� Draw state values x�r+1�N
�k� 	N�FN�xrN

�i�k�� ,�r
�i�k��� ,C�,

and set �r+1
�k� =�r

�i�k��, for k=1, . . . ,M.
�iv� Compute new costs �r+1

�i� =Er+1
j �x�r+1�N

�i� ,�r+1
�i� � and build

�r+1= �x�r+1�N
�i� ,�r+1

�i� ,�r+1
�i� �i=1

M .
�v� Estimation: let imin� �1, . . . ,M� be the index of the

smallest cost, i.e., �r+1
�imin���r+1

�k� for k=1, . . .M. Then we
choose estimates x̂�r+1�N=x�r+1�N

�imin� and �̂r+1=�r+1
�imin�. Option-

ally, predict x̂�r+1�N+k=Fk�x̂�r+1�N , �̂r+1� for k=1, . . . ,N−1.

5. Computational complexity

The complexity of the proposed procedure grows linearly
with the number of particles M and, as a consequence, it can
be computationally intensive. An advantage of the particle
approach, however, is the feasibility of parallel implementa-
tions that ensure a fast processing of the data and enable
real-time operation. Indeed, the processing of a single par-
ticle �or a relatively small group of them� is computationally
inexpensive. It involves sampling from simple Gaussian dis-
tributions and straightforward computations for the costs.
These tasks can be carried out by very simple processing
elements.

The only relevant difficulty for a parallel implementation
is the selection of particles performed in the second and third
items of the recursive step because it requires the interaction
of the whole population of samples. However, this problem
can be avoided using the methods recently developed for the
parallelization of the resampling procedures in standard se-
quential Monte Carlo filtering algorithms �20,21�. We also
note that it is not necessary to carry out the selection of
particles at each time step, although we have not addressed
this issue in this paper.
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